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Summary — Recent theoretical researches in magnetoaerodynamicscarried out in Japan

are reported. They are mostly concerned with flows of electrically conducting fluids past

two- and three-dimensional bodies, such as circular cylinders and spheres, in the presence

of a uniform magnetic field. Small-disturbance theories, including the Stokes and Oseen

type approximations for viscous flows and slender-body theory for inviscid flows, are

developed. Peculiar behaviour of magnetohydrodynamic wakes accompanying bodies

placed in uniform magnetic and flow fields is investigated. Flows of conducting

fluids past magnetized bodies are considered. Jets and boundary layers are also studied.


1. INTRODUCTION

THIS paper reports on the results of theoretical research in the field of

magnetoaerodynamics recently performed in Japan. Emphasis will be

placed on the study of magnetohydrodynamic flows of electrically con-

ducting fluid past bodies, with special reference to the forces acting on

them. Thus, the works mainly in the field of astrophysics or thermo-

nuclear research are not mentioned, while the studies concerning boundary

layers and jets are only briefly touched upon.

2. THE STOKES TYPE APPROXIMATION FOR MAGNETOHYDRODYNAMICS

Chesterm was the first to consider the magnetohydrodynamic flow

of an electrically conducting fluid past a body in the presence of magnetic

field. He considered the slow motion of a sphere in the direction of a

uniform magnetic field. He obtained the formula for the drag D in the

form :
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where Ds is the classical Stokes drag, and H is the Hartmann number.

Thus

Ds = 67r,ov aU, (2.2)

H = (olev)"Bcca  (2.3)
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where  U  is the velocity of the sphere, a its radius, y and a are respectively

the density, the kinematic viscosity and the electrical conductivity of the


fluid, and  13  is the magnetic induction of the uniform magnetic field.


In the rationalized MKS system of units, the basic equations of

motion for an incompressible, viscous and electrically conducting fluid

in the presence of magnetic field can be written in the forms:

(2(V grad)  V = -grad  p 1-(2i..1Vx  B (2.4)

div  V =  0 (2.5)

curl  E -  0,curl  H = j, divB  —  0 (2.6)

B = (2.7)

j = cr(Ex B) (2.8)

where  V  is the velocity,  p  the pressure,  E  the electric field,  H  the mag-

netic field,  B  the magnetic induction,  j  the electric current density, and
p the permeability. Eqs. (2.4), (2.5), (2.6) and (2.8) are the equation of

motion, the equation of continuity, Maxwell's equations and Ohm's law

respectively. For magnetohydrodynamic approximation, the equations

div  D = ty and  D s E  are not needed.

Chester made use of the fact that the magnetic field is not disturbed

by the motion of the sphere, for small magnetic Reynolds number. Thus.

the effect of the magnetic field appears only as the Lorentz force  j  B
in the equation of motion (2.4), such that

j>B=r(VxB)>B.

B,  being the undisturbed magnetic field. Then the velocity  V  and

pressure  p  can be expressed in forms quite similar to the Oseen approxi-

mation for the ordinary non-conducting fluid, in spite of the fact that

the Stokes type approximation is employed for the equation of motion

(2.4). The drag  D  is greater than D. This may be naturally expected in
view of the fact that the magnetic lines of force would behave just like

stretched elastic strings in confining the motion of the conducting fluid

to the neighbourhood of the sphere. Indeed, the situation would be
similar to that of the ordinary fluid motion past a sphere fixed in a pipe,

the magnetic lines of force playing the part of the wall of the pipe.

Now, it is well known in ordinary hydrodynamics that the two-dimen-

sional flow of infinite extent cannot be treated by use of the Stokes

approximation, but that it is applicable if the body is placed in a channel.

Hence, it may be expected that the Stokes approximation would be useful

for the two-dimensional flow if a uniform magnetic field is imposed on

the flow, since the field will play the part of the bounding well.

In fact, Yosinobu and Kakutani(2) considered the two-dimensional

Stokes flow of an electrically conducting fluid past a cylindrical body
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in a uniform magnetic field for two cases, one in which the undisturbed

flow and magnetic field are parallel and the other in which they are per-
pendicular to each other. Their analysis is similar to Chester's. It was

found that the cylinder is accompanied by two wake regions of roughly

parabolic shape such that the vorticity and the induced electric current
are confined there. The wakes extend in both directions parallel to the

undisturbed magnetic field. The case of a circular cylinder was discussed
in detail, and the formulae for the drag were obtained in the forms:

8.7qn,U 4f2 ; 1 (  H
2.9
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Here  D..  and  D  are the drags for the parallel and perpendicular fields
respectively, and  a,  is the electrical conductivity of the cylinder. Also
H = (alev)1/2 B,a  is the Hartmann number, and

— ! log (H/4) } (2.11)

0.57721 ... being Euler's constant.

It is remarkable that the drag for the case of perpendicular field is
dependent on the electrical conductivity a, of the cylinder and is always

greater than that for the case of parallel field, which is in dependent of a, .
Several years ago, the author(3) proposed a new method of solving

Oseen's equation for the two-dimensional flow, by use of complex
variables. A similar method can be developed for treating the Stokes

approximation for two-dimensional magnetohydrodynamic flow, on
account of the similarity of the governing equations. By this method,
Flasimoto") has obtained a very interesting result that, for the case of
parallel fields at very small Hartmann number  H 1, the force acting
on the cylinder is equal to that for the Oseen flow of ordinary fluid at
the Reynolds number  R H.  For example, the drag of a circular cylin-

der at Reynolds number  R  is given by")

D = 8novU R2 ( 5 	 1

2S--1
)

	

1-0 (R4)1 (2.12)
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where

	

S =  log(4/R)—y, R = aU/v (2.13)

It will be seen that the first term of DI can be obtained from  D  by
replacing  R  by  H.  (It may be noted that the same relation holds for the

case of a sphere. That is,

D = Dsi t l  —3R+O(R2)1
 8

which should be compared with Chester's result (2.1).)
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The two-dimensional and axisymmetric flows are very simple in the
sense that the electric field can be easily eliminated from the basic
equations; indeed it is zero or constant. But in the general three-dimen-
sional casc, Chester's analysis cannot be followed in a straightforward
manner. Gotoh(3) and the present author(6) developed independently
methods for treating such cases. Gotoh's method may be rearded rather
as a direct generalization of Chester's original method, In fact, it is based
on the assumption that the imposed magnetic field is not disturbed by
the motion of the body. But the electric field E (which was constant in
Chester's method) is taken to be variable. Thus the basic equations
are written in the non-dimensional form as

lvx--H2(o:

I oii

= `)P-,

dp

ay




(2.14)
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where Z1 a2mx2+a2/42±62/oz2  vo,x,),y,vo is the velocity, p the pres-
sure, and 0 the electric potential:

E = —grad 0 (2.15)

Here the z-axis is chosen parallel to the undisturbed magnetic field.

Gotoh applied his method to the case of a sphere moving in an
arbitrary direction with respect to the imposed uniform magnetic field.
After elaborate manipulation of the modified Bessel functions and associ-
ated Legendre functions, he obtained the formulae for the force  F:

= 6:TaQvUsinall+  196  H-E 0(H2)1)

Fy = 0, (2.16)

= 67raevUcosa11+ H+O(H2)1

where the undisturbed flow velocity is U(sin a, 0, cos a). The conductiv-
ity of the sphere does not affect the force up to the order 0(H).

The present author's procedure is to start from the Oseen type ap-
proximation (to be discussed in the following section) and consider the
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limiting case in which the viscous magnetic Reynolds numbers R, R„,

tend to zero. Thus putting

	

V = U(e' y), B = B(e-HR„,b)  (2.17)

where e, e' are arbitrary unit vectors, and treating v and h as dependent
variables, we have the Oseen approximation. Then, as its limiting case

it was found that the Stokes approximation can be generally expressed
in the form :

1 ,
-2 lu -u2 ,

a 1
b = grad 0 2H (u, u2) ,
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p

where u1, u2 and 0 satisfy the equations :

± H 0,

Ll 0

with e — (1,  0, 0). Here 5 is the (non-dimensional) total pressure, that
is, the sum of the pressure and the magnetic pressure. Further, explicit
expressions for v,  h and p have been obtained for an arbitrary three-
dimensional body as

v = 2 azn  mn mn  	 r

1 am+,, [1(
cm_,

a )e-k(r+x)

-4- (c, (o) -FC' (1) a)e-k(r-x))

	

ax r
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0,  a a  )gel,

b
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y   am+nEi(c(0) cu) a  e kfr z) (2.20)
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where k = HI2, e = (I, 0, 0), and

(k(r x))* E(k(r x))-- log (y21-z2)1,

g„ E(k(r— x))— E (r-H x)) log2 X I
and

E()  — e A
uç(

y being Euler's constant. The arbitrary constants C;,?,;  B;;„
.0;:,),;etc. arc not independent because of the conditions div  V -=  0, div
b = 0, but are subject to the relations such as

4,0)) r 0,

Ag) — 2k A ,(,,,;) , A0'40)

1
(2.23)

134g) - 13 0' ,;°) - - — C (;g) C  — Da)
From (2.20) it is obvious that the flow field contains two wake regions.
Namely, the terms containing exp(—k(r f-x)) or E(k(r -•.\-))represent a
paraboloidal wake extending in the direction of the negative x-axis, while

those containing exp(--k(r----x)) or E(k(r  x)) a wake around the positive
x-axis. The outer region is only influenced by the D,(„°,;terms, and has

a character of two-dimensional irrotational motion, since the flow there
is given by

(o, -a-- a I G1,°) an" tog (y2H-f2 )a y I 4k -,"-d aymk"

which represents a uniform distribution of various kinds of multiplets
on the x-axis.

Further, the formulae for the force F and moment M acting on the

body have been obtained :

Fy —47rovU(Ag)4 A°)

Fy - umg), (2.24)
- 4.7-EQvUDa) ;

Mx - 2.71ev(UC2)+C;r)---Bg)—B,r),
My — IzovUlDa)÷2(A1H-A'01;))},  (2.25)

	

—2.7rer U 1-2(4) Ar )1.

(2.21)


(2.22)

As an example of application, the author has treated an arbitrary slow

motion of a sphere. On account of the linearity of the Stokes approx-
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imation and the symmetry of the geometry, it is sufficient to consider

the four special cases:
translation parallel to the x-axis,

translation parallel to the y-axis,

rotation about the y-axis

rotation about the y-axis.

It has been found that the force and moment acting on the sphere are

given, in each of the above-mentioned cases, by

3
(i) L = 6:7 (1.+: QvUa,

4

9
Fy  = 6:z ( 1-; 8  k ) QvUa,

M, —  —8.7 ( -
4

k2)  orUa3,

4
Mo — —8:7(1} 45k2)(2),Qa3,

all the other components of force and moment vanishing. I-lere  U  and

LI are the magnitude of linear and angular velocities, respectively. The

results (i) and (ii) are in agreement with those of Chester (2.1) and of

Gotoh (2.16), respectively.

It may be mentioned that quite recently Takaisi(7' has considered the

steady slow motion of a circular cylinder in a semi-infinite mass of a vis-

cous, electrically conducting fluid parallel to its bounding plane wall

in the presence of a uniform magnetic field. Using Stokes approximation,
he has carried out detailed calculations for two cases: parallel and per-

pendicular magnetic fields.

3. THE OSEEN TYPE APPROXIMATION

The above-mentioned Stokes approximation corresponds to the as-

sumption of vanishingly small Reynolds number  R  and magnetic Reynolds

number  R„,  with finite Hartmann number  H.  Accordingly, if the pres-

sure number  S  and the Alfvén number  A  are defined by

	

11A2 - H2IRR,„  (3.1)

we have  S cc  and  A —> 0 for Stokes approximation.

Now, the Oseen type approximation can be developed similarly to

the ordinary fluid dynamics, on the basis of the method of small disturb-

ances. T hus, assuming that

V  =  U(e'—v),  B =  B,(e - ) (3.2)

(2.26)

45.
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where e' , e are unit vectors, and  v, b  are small perturbations, the basic

equations for magnetohydrodynamics can be linearized with respect to
v and  b.

Yosinobu(s) and Gotoh(9) considered the case of parallel fields: e = e' .

Yosinobu made a detailed investigation for the case in which the electric
field vanishes everywhere. This is true for two-dimensional and axisym-
metric flows. As a concrete example, he treated the two-dimensional
flow past a circular cylinder. His result for the drag is expressed as

1 6a0 vU (k1— k2)

D 	 (3.3)

(R„,-21(1) tl  2Q ( k 2)1 — R-2k1)tl +212(1 c 1))

where

1(.1, 2 = t(R-1- R.) ± p (R—  R.)2+4 H2} (3.4)

(k) =  —{y +log (k/2)}, y = 0.57721... (3.5)

aU

	

R = — ayaLl  (3.6)
v

	

H = (al ov)112B,a  (3.7)

The case:  R. =  0 or  S =  O.
In this case (3.3) becomes

D
8yrüvU

1H-212(R/2)

This is Lamb's well-known result for ordinary viscous flow.
The case:  R — R , =  0,  H —  finite.

Here, (3.3) becomes
8novU

D =   (3.9)
1 - 2S-2 (H/2)

This agrees, to the first approximation, with the result of Yosinobu and
Kakutani (2.9) based on the Stokes approximation.

It is interesting to note that near  S =  l(H,  RR,„),  we have

QvU
D  (3.10)

log IS-11

so that the drag has a sharp minimum zero at  S = 1.  This seems to imply
that the Oseen approximation fails near  S = 1 or  A =  1.

Similar investigations have been made for the case of a sphere by
Gotoh(3). In this case also the drag behaves differently according as  S  is
smaller or larger than 1. Thus

	

3 19 2H'
D =  67(2 vUa11 ; - R— 	 R-  5(2±x) 4- 0(63)1,  S  (3.11)

	

8 320

(3.8)
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3 R2—RR÷2H2
= 6.1.(21,Ua[1+

8 8 ((R—R„,)2+41/2)"

19R2(R+-R„,)2±(H2RR,„)(76R2-180H2)

320{(R—Rm)2+4H2}

2H2

5(21+0(63)1,1-x)
S > 1(3.12)

where =  dub/p,  is the ratio of the permeabilities of the sphere and the

fluid, and k, and k2 have been assumed to be small of 0(6). (Gotoh has

obtained the formulae (3.11) and (3.12) correct up to 0(63)). The above

formulae give interesting limiting cases.

The case: R = 0 or S = 0, so that II = 0 and R 0.

Here (3.11) becomes

3 19 71

6:T(2v(la  1+ 8  R  320  R2  2560 R3 O(R4)

This is Goldstein's result.

The case: R = R— 0, H 0 0(S = 1


In this case (3.12) gives Chester's result. (2.1).

The case: S = I.
Both (3.11) and (3.12) give

(3.14)
83205(2-1201CcrevUa

Thus, contrary to the case of two-dimensional flow, the drag has a finite

value (which is minimum) at S = I.
It is interesting to note that if 0(62) is neglected, the drag is independ-

ent of H and hence of the magnetic field as long as S < 1, while fcr
S > 1 it increases with the magnetic field.

The present author(6) has considered the linearization of the unsteady

three-dimensional motion of an incompressible, viscous and electrically

conducting fluid. The basic equations can be expressed as

ave = - 0(V •grad) V +-1--(B • grad)B—grad (o 1-
2u-)-1 (3.15)at

'
aB 1

— curl(V x B) curl cur1B ,
at  ay

div V = 0

(3.13)

(3.16)


(3.17)

div B = 0 (3.18)

Here t), p, a, v are assumed to be constant.
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Substituting (3.2) and neglecting second order terms with respect to

v and h, we have, after some calculations,

v — v„-1pi, h = ,

tat]
P (P-1-121).„).

where

0
v„ = grad 0 ,

h„= grad 4),

p = H2 ax2 RR,„(j-t
)1

3

= 0

R( )

1 ah,

ot os f , = H2
v 	 ox


I a  \I L ar,
as11"1--  ox'

div y, 0, div h, = 0 ;

(3.19)


(3.20)


(3.21)

e.grad e' • grad
Ox as (3.22)

Here (3.20) and (3.21) are expressed in non-dimensional forms such that

r(x, )' , z) and t are used in place of r,11and (U//)t.From the above equations,
we can derive various special cases For steady flow, we have simply to

put c.)'at -. 0.

Elimination of b1(or v1) from (3.21) aives a fourth order differential

equation for vjor 1)1).But it can easily be seen that for two special cases

(i) R - R„,and (ii) e = e', the equation can be reduced to a pair of second
order equations of the Oseen type.

(i) The case: R = R„,

(3.23)

Hi )ui = 0, i 1,2 (3.24)
dx(i)

where .v") is the coordinate axis whose direction is given by the unit vector

e, such that

H ie, = Re' -71--He  (3.25)
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(Here and below, the upper and lower signs correspond to  i =-  1 and 2,

respectively). Hence

H21  1 A2--F• 2A cos  a  (3.26)

NNhere

tan (9;
A  sin a


A Cos a-T-1
(3.27)

e' - cos u, cos 0,

From (3.24) it can be seen that two wake regions of paraboloidal shap
W1, W., appear around the x(1) and x(2) axes with the widths proportional

to /-W12 and  1-L21/2, respectively.

(ill The case of parallel fields at infinity: e
In this case we have

UI 1.1 1,2

with

e'

(3.28)

(1R,())u,
0A-

0




(3.29)

R„,) -T- I1.,(R R.)2 H2 (3.30)

- • R,„)+I11(R -R„,)2 112 (3.31)

Eq. (3.29) shows that here also two paraboloidal wakes W1, W„ appear

along the x-axis. It is readily seen that R, - 0 according as  A  0, whereas
always R2 > 0. Hence the wake W„ is always situated along the positive
x-axis , while the wake W, appears around the positive or negative x-axis

according as the Alfvén number  A  is larger or smaller than I. There

does not seem to exist such a simple asymptotic behaviour of fluid flow

except for the above-mentioned special cases.

4. STEADY MOTION OF A COMPRESSIBLE, INVISC1D,


PERFECTLY CONDUCTING FLUID


WITH PARALLEL VELOCITY AND MAGNETIC FIELDS

The small-perturbation theory of magnetoaerodynamics was first con-
sidered by Sears and his group", "II. In particular. Resler"2) established
the basic equation for the two-dimensional motion of a perfectly con-
ducting, inviscid, compressible fluid with parallel velocity and magnetic

fields in a very elegant form analogous to Prandtl-Glauert's equation.

The same equation had also been found by Taniuti O3) without the asump-
tion of small perturbation. The present author" first obtained Resler's

equation for the three-dimensional case by using the small-perturbation
theory, and then without making such an approximation(6).
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The steady flow of an inviscid, perfectly conducting, compressible

fluid is governed by the equations:

div v 0 (4.1)

9-V x w —
1-B

X j = grad (
2

-F-P-1--Q) (4.2)

VxBr E— grad  0  (4.3)

	

div B= 0 (4.4)

where

w — curl V

j -1--curl B
It

p C dp

f.)

Q is the potential of the extential force (such as gravity),  0  is the electric

potential, and the density  p  is assumed to be a definite function of the

pressure  p  only.

It can readily be shown that  0  is constant along each streamline and

each maunetic line of force. Therefore, if the flow velocity and magnetic

field are parallel to each other at infinity upstream: VœlIB„, then E,
x B,— 0 and hence 0 are constant (so that VIIB) everywhere

in the field of flow. Then analogously to the Bernoulli theorem in the

conventional fluid dynamics,  q212- -P+0,  is constant along each Stream-

line. After some calculation, it can be shown that V and B are expressed
in terms of a certain vector b:

V 1 -A;2 B 1—A2
U 1—A B, = 1 A2

h (4.8)

where

div Tb 0, curl b = 0 (4.9)
with

1—A!,„
(4.10)

1 —A2

A2 =  q2IV:= e,le, (4.1 1)

A, Va  being the local Alfvén number and Alfvén velocity, respectively.
If there is no external force, Q = 0. Then, in view of the generalized Ber-

noulli theorem, all the physical quantities  q, Bete. are functions of a single
physical quantity. Therefore T is a definite function of  b = lb. Hence
(4.9) can be regarded as a pair of equations governing the irrotational

(4.5)


(4.6)

(4.7)
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flow of a hypothetical compressible fluid, b and r playing the parts of

velocity and density. Thus, the steady magnetohydrodynamic flow of an
inviscid, perfectly conducting, compressible fluid starting from a uniform

state with parallel velocity and magnetic fields at infinity can be reduced

to the conventional gas dynamics of a hypothetical gas. For example,

the equations of motion can be obtained simply by using the method

of conventional gas dynamics:

a249

(a2 b2x) ao2x492 +(a2 by2)  a62:2 (a2 bz2) 

dz2
a24,

—2bybz. 	 2bzbx a() z2 (tc —2bxby axay= 0 (4.12)
00-

where

b = grad 0, (4.13)

A2i-M2-1
a2 — 	 b2 (4.14)

A2M2

Here M is the local Mach number defined by

dp

do
(4.15)

a plays the part of local sound speed for the hypothetical gas and so may

be called the pseudo-sound velocity. Thus, the pseudo-Mach number

may be defined by

in (4.16)

For small perturbation, we may put h • ( 1 ,  0 , 0 ) . Then

1 1
=

M

so that (4.12) is reduced to

(1- 0
dx- ay- az2

which is Resler's equation, originally obtained for the two-dimensional
ficm (12)•

It should be remarked that analogy between the magnetohydrodynamics
and the ordinary gas dynamics of a hypothetical gas can be used to develop

a method of calculation similar to von Kármán—Tsien's hodograph method.
Moreover, it should be emphasized that the method is applicable to the

general three-dimensional problems, in contrast to the fact that von
Kármân—Tsien's method is applicable to the two-dimensional problem
only.

(4.17)
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5. SMALL-PERTURBATION THEORY OF AN INVISCID COMPRESSIBLE

FLUID OF FINITE ELECTRICAL CONDUCTIVITY

Since the Reynolds number of the flow is usually very large, the fluid
can be regarded as inviscid, while compressibility may be important for
flow at high speeds. Small-perturbation theory of such flows has also
been considered in Japan. Ando05) considered the general three-dimen-
sional flow of an ideal gas in the presence of a uniform magnetic field

at an arbitrary orientation with respect to the undisturbed uniform flow.
He obtained the basic equations in the forms:

V

with

v

h

p—p, =

— U (e +v),B)

)--a grad H  RA' e ' 

ax ax

a ao
R„,(e  	 grad)

R
a  )()R„, 1160

242OX

equation:

) a R„,1114.7,,,a2 i)
0

(5. I )


(5.2)

(5.3)

where 0 satisfies the

ax)(.1 ax2 axax-2




Here  e = (1,  0, 0),  e  are unit vector and  6/(Jii  _ e' •  grad. Also . M„.  and

A, are the Mach number and Alfvén number of the undisturbed flow:

M — A, - Ul(B„,11 po,)  (5.4)

It is easy to deduce Resler's equation (4.17) from (5.3), by putting  e' e
and  R„,  As an example, Ando treated the flow along a sinusoidal
wall of non-magnetic and non-conducting material, for the case in which
the magnetic field  (e')  makes an arbitrary angle a with the wall. The re-
sults are of course in agreement with those by Sears and Resler"" for
the special cases of a = 0 and .7/2.

Sakurai"6 " (17) independently considered the two-dimensional flow of
an ideal gas at small magnetic Reynolds number. In particular, he treated
the flow past a thin symmetric aerofoil at zero angle of attack, in the pre-
sence of a uniform magnetic field making a small angle 6 with the undis-

turbed flow. Thus he found the formulae for the lift and drag:

CL = 0 (5.5)
1 1R

mt2CD - -  - - -

- 111, 3
e( )g' ($1)  log —$1 dŒ €1 1

-1 -1

(5.6)
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for  Moo <1, and

CL  = 2t 


2t=
[g'(e)]=

I-

for At, > I. Here the aerofoil is represented by

y = + tan(x)
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(5.7)


(5.8)

(5.9)

Quite recently, Ando"8) has extended his theory to cover the case of

unsteady flow and also gave special considerations to the case of "weak

 interaction"

(R„,  0 and R,„/ if;) <1) for steady flows past two-

dimensional symetric aerofoils and axisymmetric slender bodies.

6. RAYLEIGH'S PROBLEM

Consider a semi-infinite fluid bounded by an infinite flat plate. What

will be the motion of the fluid if the plate is suddenly set in motion parallel

to itself at a uniform speed? This is known as Rayleigh's problem. The

magnetohydrodynamical version of this problem was first considered by

Rossow"9). The problem is important and interesting because it furnishes

the exact solution of magnetohydrodynamics. As a matter of fact, if the

x-axis is taken in the plane of the plate and parallel to its motion, the
velocity, magnetic induction, electric field and electric current density

can be expressed, respectively, as

V = (u,  0, 0),  B — (Bo, Bo, 0)

E -=  (0, 0,  E), j = (p, 0, j)

NA,here  Bo  is the undisturbed uniform magnetic field perpendicular to the

plate.

Rossow's analysis is approximate in the sense that he assumed (es-

sentially) E= constant at any instanton, p. 37. Hasimoto(=") made rigor-
ous analysis of the problem for the two cases: (i) non-conducting plate
and (ii) perfectly conducting plate. The two cases differ in the boundary

condition at the wall y = O. Thus, B, =  0 for the former and ak/ay = 0
for the latter. It was found that the frictional drag per unit area is given by

(au) !)11/ je " +1 mnt erf i mt, 0)—Qv (6.1)

	

ay I an te ml (ii)y-o
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and the magnetic drag (due to Maxwell's stress) is

10
(6.2)B° I„v.0erf  nu (ii)

where

2
erf = 17  6)

- —  




B,
	 ), Va

./I QtI v I I'm

Va, r, r.— llay being the Alfvén velocity, the kinematic viscosity, and
the magnetic viscosity, respectively.

Also, as t oo, the flow tends to a steady state represented by

I v (11-1/e
I V+ I VIII

Ai v
(1—e "3 ),

BoI l'H-1

u U, B„— —AB0

(6.5)

(6.6)

where  II — V a(v v)' 2. (Hy  is the Hartmann number.)
i Further, simple expressions have been obtained for u and B at any
instant for the special case v vm.

The flow of semi-infinite mass of fluid due to a harmonically oscil-

lating flat plate can be dealt with in a similar manner to the Rayleigh
problem. This problem was in\ estigated by Kakutani both for the case

of a non-conducting(21) and for a perfectly conducting plate("). He ob-
tained exact solutions for arbitrary values of the Reynolds number R,

the magnetic Reynolds number  R.  and the magnetic pressure number S
Here R, R„, and S are defined as

R — U2/ro, R— U2/r.(,), S = B/jU =  1/A2 (6.7)

where U and w are the amplitude and angular frequency of the velocity

of' the oscillating plate. It was found that the amplitude and the phase
lag of the total drag (viscous stress±Maxwell's stress) are always increased

by the effect of magnetic field. Further, it was shown that Rossow's as-
sumption of E 0 corresponds to the "magnetic Stokes approximation",
which consists essentially in assuming  R. 1 and  SR.—  0(1), and
that the cases of magnetic field fixed to the plate and to the fl uid
correspond to the cases of a perfectly conducting and a non-conducting

plate, respectively.

(6.3)


(6.4)
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7. MOTION OF A MAGNETIZED BODY THROUGH VISCOUS CONDUCTING
FLUID

Even in the absence of external magnetic field, some mautetohydro-

dynamical effect will appear when a magnetized body moves through

an electrically conducting fluid. Tamada(23) studied such a problem for

the case of a sphere and a circular cylinder carrying a magnetic dipole

at their centres. The fluid was assumed to be incompressible, and both

the viscous and magnetic Reynolds numbers  R, R„,  to be small.

In non-dimensional form, the basic equations can be expressed, for

two-dimensional and axisymmetric flows, as

R(V  grad)  V  —grad  p VH-1/2(I7 x B) X B (7.1)

curl  B = R„,(V x B) (7.2)

div V = 0 (7.3)

div B 0 (7.4)


Assuming  R„,  to be small,  B  can be found from (7.2) and (7.4) as

B = B0 =  grad y (7.5)

y being the magnetic potential. Introducing (7.5) into (7.1) and neglect-

ing the left-hand side, we have Stokes approximation. For small values

of the Hartmann number  H  the equation could be integrated by the

method of perturbation. In particular, the drag of the sphere carrying

 a magnetic dipole (represented by

z r  2cosO) was obtained in the

form :

D = 1),-- D„,= ( &to  ra u 1
2

(7.6)

wit h

Da = 6.7ro ti( 1— 21s- H2 ) (7.7)

D„,—
2

aH2araU (7.8)
5 -

where Dd and  D,„  are respectively the dynamic and magnetic drags.

Similar calculations were carried out for the case of a circular cylinder

carrying a mautetic dipole with axis making an angle a with the direction
of the motion. In this case the lift  L  and the drag  D  are given by

/12
2II+1

8(7
cos 2a)

4

L
.71-12evU  sin 2a

6(422— 1)

D=
8:to vU

(7.9) •

(7.10)
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where

= log(4/1?) R

Further, the case of a circular cylinder carrying a concentric-circular

magnetic field: y =- — logr (produced by an electric current along its

axis) was considered. The drag was calculated to be

8.7r U I 1
D

or
- 1/2(log R )2 , ( 7 .11)

2i2-7- 1 I 8 I

All the above examples are common in showing that the loaded

magnetic field retards the flow and reduces the dynamic stress on the

body, but the magnetic drag always counteracts the reduction so that the

total drag is always increased by the magnetohydrodynamical effect.

8. OTHER WORKS

In this paper we have surveyed the researches carried out in Japan

concerning the magnetoaerodynamic flow past a body. There have also

been researches dealing with boundary layers or jets. These will be only

briefly mentioned in the following, lines.

Sakurai"." studied the two-dimensional and axisymmetric jets in the

presence of a longitudinal magnetic field. Kakutani(25) studied the

axisymmetric stagnation-point flow under transverse magnetic field.

Tamada and Sonet2" dealt with the Blasius flow along a semi-infinite

flat plate under parallel magnetic field. Yasuhara(27) obtained exact

solutions of flows along a circular cylinder and a flat plate with uniform

suction over the surface in the presence of transverse magnetic field.

Mori(2'' treated the laminar free-convention flow and heat transfer of

electrically conducting fluid on a vertical flat plate in the presence of

a transverse magnetic field, using boundary layer approximation. Quite

recently, Morioka(29) has investigated the structure of the two-dimensional

and the axisymmetric jets of a perfectly conducting inviscid gas with

parallel magnetic field on the basic of small-perturbation theory.
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